Perceptual Evaluation of Source Separation: Current Issues with Listening Test Design and Repurposing

Ryan Chungeun Kim
Centre for Vision, Speech and Signal Processing (CVSSP)
University of Surrey, U. K.
Contents

• The MARuSS project at Surrey: overview
• Key issues in perceptual evaluations and listening test design
• Source separation and repurposing
• Summary
The MARuSS project: overview

<Musical Audio Repurposing using Source Separation>

- Separation of legacy-format music mix (e.g. stereo) with consideration of “repurposing”: remixing or upmixing
- Development of evaluation techniques to judge the outcome
- https://cvssp.github.io/maruss-website/
The MARuSS project: overview

Musical Audio Repurposing using Source Separation

- Emerge of machine learning techniques to estimate masks to apply
- Design and application of novel deep learning techniques / structural arrangements

(from Institute of Sound Recording (IoSR) blog, http://iosr.surrey.ac.uk/blog/2013-10-23.php)
The MARuSS project: overview

Works within the MARuSS project

- **2015: “Deep Karaoke”**
 - Use of a DNN to estimate the binary mask towards vocal extraction
- **2016: Use of a set of DNNs**
 - Different types of time-freq masks (binary, ratio, etc.) are estimated
 - Combinations are used for the final output
The MARuSS project: overview

Works within the MARuSS project

• 2017: Multi-stage separation
 • Stage 1: the separated sources are considered as mixtures for the input of the second stage
 • Stage 2: the separated sources are further enhanced (separately or jointly) to deliver the final estimates

• 2017: Use of other deep learning techniques
 • Convolutional Denoising Autoencoders
The MARuSS project: overview

Works within the MARuSS project

• 2018: More complicated combinations
 • *Multi-channel & multi-resolution* Convolutional Autoencoders, in *time domain only*

 mix
 extracted vocal
 accompaniment

• Multi-stage / multi-neural network combination
The MARuSS project: overview

Works within the MARuSS project

• Most recent work in this AES Convention
 • E. M. Grais and M. D. Plumbley, “Combining Fully Convolutional and Recurrent Neural Networks for Single Channel Audio Source Separation,” in Audio Engineering Society Convention 144, Milan, Italy, 2018
 • Poster Session P19: Audio Processing/Audio Education
 • Friday, May 25, 13:15 — 14:45
Key issues in perceptual evaluations and listening test design

Some background

• Why go perceptual?
 • Metric needed to evaluate the source separation performance
 • Conventional measure: BSS-eval (Vincent et al. 2006), based on energy ratios of decomposed signals
 • e.g. Source-to-Distortion / Interference / Artifacts
 • Correlation with actual listener responses questioned

• More recent alternative
 • PEASS (Perceptual Evaluation methods for Audio Source Separation) (Emiya et al. 2011): application of computational auditory models
 • Correlation with listening test data still questioned (Cano et al. 2016)
Key issues in perceptual evaluations and listening test design

Typical listening test design

- Multi-stimulus (e.g. MUSHRA: Multi Stimulus with Hidden Reference and Anchors)
- Reference: perfectly separated source = original track
- Anchors: dependent on the quality aspects being asked
Key issues in perceptual evaluations and listening test design

Listening test for perceptual evaluation

- Quality aspects for listening test questions
 - Initiated from energy-based metrics (SDR, SIR, SAR)
 - Typical starting point:
 - Global quality
 - Preservation / distortion of target source
 - Suppression of other sources (interference)
 - Absence of additional artificial noise (artifacts)
 - Anchors are created towards lowest perceived quality
 - e.g., LPF, time-freq frame removal, adding other tracks
Key issues in perceptual evaluations and listening test design

Confusions found from anchor scores

- Physical “loss” resulting in “something new”
 - Target distortion vs artifacts? (Emiya et al. 2011, original PEASS work)

- Source of “interference” – other sources? Or musical noises?
 - Interference vs artifacts (artificial musical noise)? (Ward et al. 2018)

- Perceptually not independent
Key issues in perceptual evaluations and listening test design

Further steps

• Identify the relevant perceptual dimensions
 • e.g., descriptive extraction / multi-dimensional mapping (Cano et al. 2018 ICASSP)

• Find the right descriptors
 • Attempts to use alternative questions (e.g., Simpson et al. 2017, Ward et al. 2018)
 • Evaluation of SiSEC 2018 dataset under way (Check LVA-ICA 2018 at University of Surrey)
Source separation and repurposing

Can we use these separation techniques at all?

• Suppression of unwanted sources
 • James Clarke, 2017 AES Berlin Convention, Beatles at the Hollywood Bowl

(Image from “The Beatles At The Hollywood Bowl, The Lost Live Album”, Feature Story, onabbeyroad.com)

Source separation and repurposing

Can we use these separation techniques at all?

- Repurposing can make the individual source degradations unnoticeable
 - Level remixing: Wierstorf et al. 2017
 - Vocal level after separation could be increased by up to +6dB
 - Spatial remixing (upmixing): some previous studies
 - Scene width can be manipulated
 - Artifacts / interferences → spatial fluctuation or localization ambiguity (demo)

Wierstorf et al. 2017
Cobos et al. 2008
Barry and Kearney 2009
FitzGerald 2011
Source separation and repurposing

Spatial remixing - demo

(For downloadable tool check 3D Tune-In EU project: http://3d-tune-in.eu/)
Summary

• Source separation research
 • Deep learning has provided promising results
 • Performance enhancement through novel techniques
• Evaluation of source separation
 • Relevance of BSS-eval / PEASS under questions
 • Need for more representative perceptual metrics
 • Confusions in the quality attributes require further investigations
• Source separation towards repurposing
 • Non-perfect separation is still acceptable
 • Excessive interferences/artifacts now lead to spatial degradation
Thank you!

- This project is supported by grant EP/L027119/2 from the UK Engineering and Physical Sciences Research Council (EPSRC).

http://cvsssp.org/events/lva-ica-2018/
References

