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Overview

Combining different models is a common strategy to build a good single chan-
nel audio source separation (SCSS) system. We combine fully convolutional
neural networks (FCNs) and recurrent neural networks, specifically, bidirec-
tional long short-term memory recurrent neural networks (BLSTMs). FCNs
are good at extracting useful features from the audio data and BLSTMs
are good at modeling the temporal structure of the audio signals. Our ex-
perimental results show that combining FCNs and BLSTMs achieves better
separation performance than using each model individually.

Problem formulation of SCSS

Given a mixture of I audio sources as y(t) = ∑I
i=1 si(t), the aim of the SCSS

is to find estimates ŝi(t) for the sources si(t), ∀i from the mixed signal y(t).
This can be formulated in the short time Fourier transform (STFT) domain as
Y (n, f ) = ∑I

i=1 Si(n, f ), where Si(n, f ) is the unknown STFT of source si(t),
Y (n, f ) is the STFT of the observed mixed signal y(t), n, and f are the time
and frequency indices respectively.

FCN for source separation

The fully convolutional neural network (FCN) consists of an encoder part and a
decoder part. The encoder part is composed of repetitions of a convolutional layer
and an activation layer. Each convolutional layer consists of filters that extract
features from its input layer, the activation layer imposes nonlinearity to the
extracted features. The decoder part consists of repetitions of deconvolutional
(transposed convolution) layer and an activation layer.

Figure: The overview of the structure of a FCN that separates one target source from the mixed
signal.

The FCN is used to map the magnitude spectrogram of the input mixture into
the magnitude spectrogram of the target source. The FCN in this work is a fully
2D convolutional deep neural network. The input and output data for the FCN
are 2D signals (magnitude spectrograms) and the filtering is a 2D operator.

BLSTMs and LSTMs for source separation

The Bidirectional Long Short-Term Memory (BLSTM) is a Long Short-Term
Memory (LSTM) recurrent neural network that uses contextual information from
the past and future of its input/output sequences. Fig. 2 shows the recurrent
neural network structure that we use in this work. The hidden layers are BLSTM
layers and the output layer is an LSTM layer. The input of the BLSTM are se-
quences of N consecutive frames from the spectrograms of the mixed signal. The
output of the LSTM layer is a spectral mask corresponding to the N consecutive
input frames.

Figure: The unfolded in time of the recurrent
neural network that we use in this work.

The mask represents the contribution of
the target source in the input mixture.
The spectral mask scales the mixed sig-
nal according to the contribution of the
target source in the mixed signal as fol-
lows:

Ŝi(n, f ) = Mi(n, f )×Y(n, f ) (1)
where Ŝi(n, f ) is the estimate of the
magnitude spectrogram of the target
source i, Y(n, f ) is the magnitude
spectrogram of the mixed signal, and
Mi(n, f ) is the output spectral mask
from the LSTM layer.

Training the FCN and BLSTM models

The FCN that separates source i from the mixture is trained to minimize the
following cost function:

Ci = ∑
n,f

Zi (n, f )− Stri (n, f )
2 (2)

where Zi is the actual output of the last layer of the FCN of source i and Stri is
the reference output signal for source i.
The BLSTM that separates source i from the mixture is trained to minimize the
following cost function:

Di = ∑
n,f

Qi (n, f )−Mtri (n, f )
2 (3)

where Qi is the actual output of the last layer of the BLSTM (the LSTM layer) of
source i and Mtri (n, f ) is the reference spectral mask for source i. The reference
spectral mask for source i is computed from the training data as follows:

Mtri (n, f ) =
Stri (n, f )

∑I
j Strj (n, f )

, ∀i. (4)

The inputs of the FCN and BLSTM are 2D-segments from the magnitude spec-
trogram Ytr of the mixed signal

Combining FCNs and BLSTMs for source separation

Figure: The proposed combination of FCN and BLSTM
models for SCSS.

The aim of the FCN-BLSTM
combination is to build a
model that captures the
spectro-temporal characteris-
tics of the audio data better
than each model (FCN or
BLSTM) individually. The
FCN is used first to extract an
initial estimate of the magni-
tude spectrogram of the target
source from the input sequence.
The initial estimate is then
passed to the BLSTM network
to enhance the output sequence
of the FCN. The FCN is good
at extracting useful features
from the input signals and the
BLSTM is good at modeling
the temporal structure of the
input sequence.

Joint training for the combined models

The trained layers of the FCN and BLSTMmodels for source i are stacked to form
the combination of the FCN and BLSTM models: FCN-BLSTM. A joint training
is then run over the combined model (FCN-BLSTM) to refine the parameters
of the trained models to fit the training data well. The input of the combined
FCN-BLSTM model during training is the magnitude spectrogram Ytr of the
mixed signal and the reference output is the reference spectral mask Mtri (n, f )
computed from Eq. (4). The training of the FCN-BLSTM model is done by
minimizing the cost function in Eq. (3).
Note that, when the BLSTM model was trained individually, the input of the
BLSTM was the magnitude spectrogram Ytr of the input mixed signal, but when
the BLSTM is trained within the combined FCN-BLSTM model, the input of the
BLSTM is the output of the FCN. Similarly, the updating of the FCN parameters
in the combined model is based on the propagated errors between the output of
the BLSTM and the reference mask Mtri (n, f ) and not based on the magnitude
spectrograms as it was when it was trained individually. These differences in the
training conditions for the FCN and BLSTM in the combined model makes the
joint training of the combined FCN-BLSTM model necessary.

Experiments

We applied our proposed SCSS using FCN-BLSTMmodel to separate the singing
voice from a group of songs from the SiSEC-2015-MUS-task dataset.
We compared the performance of the combined FCN-BLSTM model with using
each model (FCN and BLSTM) individually and also with the feedforward neural
network (FFN).
The table shows the number of layers, the type of each layer, the number of fil-
ters/units in each layer, the size of the filters, and the total number of parameters
for the FCN, BLSTM, FCN-BLSTM and FFN models.
The activation function in the FNN and FCN layers is the rectified linear unit
(ReLU). The activation function in the BLSTM is sigmoid in the forward direc-
tion and hard-sigmoid in the recurrent direction.
We built the combined model from the trained FCN model and only the first and
last layers from the trained BLSTM model. We then retrained/fine-tuned the
parameters of the combined model. By removing the middle layer of the BLSTM
model in the combined model, the number of the parameters in the combined
model becomes less than the number of parameters in the BLSTM model only.
The parameters for FCN, BLSTM, and FFN networks were initialized randomly.
The parameters of the combined model FCN-BLSTM were initialized from their
corresponding parameters from the trained FCN and BLSTM models.

FCN, BLSTM, FCN-BLSTM, and FFN model summary
The input/output data with size
15 frames and 1025 frequency bins

Layer FCN BLSTM FCN-BLSTM FFNnumber

1 Conv2D BLSTM Conv2D DENS
[12,(15,39)] 2050 units [12,(15,39)] 1025 units

2 Conv2D BLSTM Conv2D DENS
[22,(9,19)] 2050 units [22,(9,19)] 1025 units

3 Conv2D LSTM Conv2D DENS
[32,(5,5)] 1025 units [32,(5,5)] 1025 units

4 Conv2D Conv2D
[22,(9,19)] [22,(9,19)]

5 Conv2D Conv2D
[12,(15,39)] [12,(15,39)]

6 Conv2D Conv2D
[1,(15,1025)] [1,(15,1025)]

7 BLSTM
2050 units

8 LSTM
1025 units

Total
529,189 172,339,400 71,992,189 4,206,600number of

parameters

Table: The detail information about the structures of the FCN, BLSTM, FCN-BLSTM, and FFN
neural networks. For example “Conv2D[12,(15,39)]” denotes 2D convolutional layer with 12
filters and the size of each filter is 15×39 where 15 is the size of the filter in the time-frame
direction and 39 in the frequency direction of the spectrogram.

All networks were trained using back-propagation with gradient descent opti-
mization using Adam with parameters: β1 = 0.9, β2 = 0.999, ε = 10−8, batch
size 100, and a learning rate 0.0001. The maximum number of epochs was 25.
The quality of the separated vocal source was measured using the signal to dis-
tortion ratio (SDR), signal to interference ratio (SIR), and signal to artifact ratio
(SAR).
In Figs. 4a to 4c, the differences between each pair of models for SDR are sta-
tistically significant except the difference between the BLSTM and FCN models.
The differences between each pair of models for SIR are not statistically signifi-
cant except the differences between the BLSTM model and all other models. The
differences between each pair of models for the SAR are statistically significant
except the difference between the BLSTM and FCN-BLSTM models.
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Figure: (a) SDR, (b) SIR, and (c) SAR (values in dB) for the separated vocal signals of using: deep fully connected feedforward neural
network (FFN), BLSTM, fully convolutional neural networks (FCN), and the proposed combination of FCN and BLSTM (FCN-BLSTM).
“Mix” denotes the input mixed signal.

The results indicate that combining the FCN and BLSTM models
achieves the best performance of the FCN in SIR (more separa-
tion) and the best performance of the BLSTM in SAR (less arti-
facts). The proposed method of using FCN followed by BLSTM
(FCN-BLSTM) works better than BLSTM, even with fewer pa-
rameters in the FCN-BLSTM than the BLSTM.
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